表面贴装元器件的选择和设计
日期:2011-02-27 15:17 点击:258
(二) 表面贴装元器件的选取
表面贴装元器件分为有源和无源两大类。按引脚形状分为鸥翼型和“J”型。下面以此分类阐述元器件的选取。
1无源器件
元源器件主要包括单片陶瓷电容器、钽电容器和厚膜电阻器,外形为长方形或园柱形。园柱形无源器件称为“MELF”,采用再流焊时易发生滚动,需采用特殊焊盘设计,一般应避免使用。长方形无源器件称为“CHIP”片式元器件,它的体积小、重量轻、抗菌素冲击性和抗震性好、寄生损耗小,被广泛应用于各类电子产品中。为了获得良好的可焊性,必须选择镍底阻挡层的电镀。
表面贴装电阻器的电容器封装有各种外形尺寸。在选取时应避免选择过小尺寸:<0.08英寸X0.05英寸以减小贴放难度,也要避免选择过大尺寸:>0英寸X0.12英寸以避免使用环氧玻璃基板FR-4时产生热膨胀系数(CTE)失配片式元件要求能在260℃温度下承受5-10S的焊接时间。
(1)片式电阻器
片式电阻器分为两大类:厚膜型和薄膜型。额定功率为1/16、1/8、1/4瓦,电阻值从1欧到1兆欧的电阻器具有各种尺寸规格,按外形尺寸分为0805(0。08英寸X0.05英寸)、1206(0.12英寸X0.06英寸)、1210(0.12英寸X0.10英寸)等。一般来说1/16、1/8和1/4瓦的电阻器相应于0805、1206及1210。选取时应首选1/8瓦、外形尺寸为1206的元件。
(2)陶瓷电容器
陶瓷电容器有三种不同的介质类型:COG或NPO、X7R和Z5U。它们的电容范围各不相同。COG或NPO用于在很宽的温度、电压和频率范围内有高稳定性的电路;X7R和Z5U介质电容器的温度和电压特性较差,主要应用于旁路和去耦场合。 陶瓷电容器在波峰焊时容易开裂,原因是CTE失配。在焊接时电极和端接头的CTE高,受热比陶瓷快以致失配产生裂纹。解决的工艺办法是波峰焊之前预热电路板,减少热冲击。Z5U陶瓷电容器比X7R电容器更容易开裂,选取时应尽量采用X7R电容器
和 片式电阻器一样,其外形尺寸应量选用1206的电容器。
(3)电阻网络
表面贴装电阻器网络采用“SO”封装,管脚为欧翼形。其焊盘图形设计标准,可根据电路需要加以选用。
现有最常用外形尺寸标准如下:150MIL宽外壳(SO)有8、14、16引脚;220MIL宽外壳(SOMC)有14、16引脚;300MIL宽外壳(SOL)有14、16、20、24、28引脚。
(4)钽电容器
表面贴装钽电容器具有极高的体积效率和高可靠性。目前,该元件缺少标准化,一般使用字母标记。选择钽电容器最主要的是注意两头的端接头结构。它有两种主要的结构形式:一种是非压膜式,一端焊接短片触头;另一种是塑膜式,引脚触头向下卷。由于贴片机动性抓取非压膜式电容器时易出现贴片不准的问题,加上这种电容器的金属端接头会使焊点变脆,选取时应尽量选用塑膜式钽电容器。
2、有源器件
表面贴装芯片载体有两大类:陶瓷和塑料。
陶瓷芯片封装的优点是:1)气密性好,对内部结构有良好的保护作用 2)信号路径较短,寄生参数、噪声、延时特性明显改善 3)降低功耗。缺点是因为无引脚吸收焊膏溶化时所产生的应力,封装和基板之间CTE失配可导致焊接时焊点开裂。目前,最常用的陶瓷饼片载体是无引线陶瓷习片载体LCCC。
塑料封装目前被广泛应用于军、民品生产上,具有良好的性价比。其封装形式分为:小外形晶体管SOT;小外形集成电路SOIC;塑封有引线芯片载体PLCC;小外形J封装;塑料扁平封装PQFP。
为了有效缩小PCB面积,在器件功能和性能相同的情况下首选引脚数20以下的SOIC,引脚数20-84之间的PLCC,引脚数大于84的PQFP
1) 无引线陶瓷芯片载体LCCC
电极中心距有1.0mm和1.27mm两种。矩形有18、22、28、32个电极数;方形有16、20、24、28、44、56、68、84、100、124、156个电极数。由于目前采用的基板多为FR-4,CTE失配的情况比较严重,应尽量避免选用。
2) 小外形晶体终究SOT
其常用的封装形式为三引脚的SOT23、SOT89,四引脚的SOT143,一般用于二、三极管。
SOT23是最常用的三引脚封装,可容纳的最大芯片尺寸为0。030英寸X0.030英寸,按断面高低分为低位、中位、高位三种。为了得到较好的清洗效果,一般优选高位封装。
SOT89一般用于功率较大的器件,可容纳的最大芯片尺寸为0.060英寸X0.060英寸。
SOT143通常用于射频(FR)晶体管的情况下,可容纳的最大芯片尺寸为0.025英寸X0.025英寸。
3) 小外形集成电路SOIC
采用欧翼形封装。对于引脚数不大于20的器件来说,采用此类封装可节省更大的覆盖面积。
SOIC封装主要有两种不同的外壳宽度:150MIL和300MIL,主要有8、14、16、20、24、28个引脚数。
在选取时应注意引脚的共面度最大为0.004英寸。
4) 塑料扁平封装PQFP
采用欧翼形封装。主要应用于ASIC专用集成电路。管脚 中心距分为1.0mm、0.8mm、0.65mm、0.5mm、0.3mm几种,引脚数有84-304条。
管脚中心距越小、管脚数越多,引脚越易损伤,共面度不易保持在0.004英寸范围内。选取时应尽量采用带角缓冲垫封装的器件(四角有四个比引脚长约2MIL的垫子),以便在安装、返修、测试过程中保护引脚。
5) 塑封有引线芯片载体PLCC和小外形J封装
均采用J形封装。具有可塑性,能吸收焊点的应力从而避免焊点开裂,形成良好的焊点。
引脚数大于40时采用PLCC,占用覆盖面积小,不易变形、共面性好。
PLCC按外形分矩形和方形两种。矩形引线数有18、22、28、32条;方形引线数有16、20、24、28、44、52、68、84、100、124、156条。
小外形J封装是SOIC和PLCC的混合形式,结合了PLCC引线强度大、共面性好和SOIC空间存线率高的优点。主要用于高密度DRAM(1和4MB).
(三) 欧翼形封装和J形封装器件引脚分析比较
引脚 的形状决定了形成的焊点,对产品的可靠性和可生产性都有着重要的影响。目前采用的主要两种形状为:欧翼形和J形,形成的焊点分别见图1和图2.
J型引脚焊点示意图 引脚形状\性能 欧翼形 J形 封坚固性 一般 好 对各种焊接方法的适应能力 较强 有局限性 焊接后清洗的方便性 一般 较好 焊接后检验的方便性 一般 一般 覆盖面积率 一般 较好
两种封装形式各有段、缺点,但具体选择应根据SMT设备的具体情况加以选择。例如,采用PLCC的好处很多,但由于它对焊接方式的选择性较强,对于无强制对流的红外再流焊就无法形成良好的焊点,应慎重选择
(四) 结论
表面贴装元器件的选取合理与否直接关系到产品的质量,在其电气性能确定后,还应根据具体设备从元器件材料、封装形式、可承受焊接温度、可焊性等各个方面加以综合考虑,只有这样,产品设计者设计出的电路才具有良好的可制造性和可靠性
SMD:表面组装器件(Surface Mounted Devices)主要有片式晶体管和集成电路,集成电路又包括SOP、SOJ、PLCC、LCCC、QFP、BGA、CSP ,FC、MCM等。连接件(Interconnect):提供机械与电气连接/断开,由连接插头和插座组成,将电缆、支架、机箱或其它PCB与PCB连接起来;可是与板的实际连接必须是通过表面贴装型接触
有源电子元件(Active):在模拟或数字电路中,可以自己控制电压和电流,以产生增益或开关作用,即对施加信号有反应,可以改变自己的基本特性
无源电子元件(Inactive):当施以电信号时不改变本身特性,即提供简单的、可重复的反应
异型电子元件(Odd-form):其几何形状因素是奇特的,但不必是独特的。因此必须用手工贴装,其外壳(与其基本功能成对比)形状是不标准的,例如:许多变压器、混合电路结构、风扇、机械开关块,等
Chip 片电阻, 电容等, 尺寸规格: 0201, 0402, 0603, 0805, 1206, 1210, 2010, 等钽电容, 尺寸规格: TANA,TANB,TANC,TAND SOT 晶体管,SOT23, SOT143, SOT89等 melf 圆柱形元件, 二极管, 电阻等 SOIC 集成电路, 尺寸规格: SOIC08, 14, 16, 18, 20, 24, 28, 32 QFP 密脚距集成电路 PLCC 集成电路, PLCC20, 28, 32, 44, 52, 68, 84 BGA 球栅列阵包装集成电路, 列阵间距规格: 1.27, 1.00, 0.80 CSP 集成电路, 元件边长不超过里面芯片边长的1.2倍, 列阵间距<0.50的μBGA