人类自工业革命以来,不断发展的生产技术使制造成本不断下降。自动化技术的出现更加剧了这一发展。而由于成本价格的下降,造成产品消费的大众化,大量生产又进一步推动了技术的发展和制造成本的下降…这现象首先出现在汽车行业中。快速发展的情况从二次世界大战后开始,一直到70年代中期汽油价格上涨时才有缓和现象。但这也只是短期性的步伐放慢。从70年代末起,随着电脑技术的诞生和进入80年代的成熟,工业和制造业的发展更是快速。而连带的造就了用户市场的剧增。据统计,从70年代末到90年代末的20年中,汽车的拥有量就翻了6倍,工业材料的产量需求增加了10倍,能源的消耗达4倍,其中电能源的消耗量更是高达8倍以上。这说明了电器和电子产品的高速度发展。事实上,根据美国的统计,电器和电子业已经在1996年超越其他工业而开始成为最大的工业。
工业和制造业的发展带给人们更好的物质生活。但却也同时带来了影响人类健康的环境污染问题。而人类也早在60、70年代初就意识到如汽车排气和水银污染等带给人们的危害及严重程度。而开始设立环保机构和通过立法等来协助控制人们对健康环境的危害。其中较大的成就是70年代初从汽车汽油中将铅去掉。而使空气中的铅污化减少了约94%。以及70年代末的从油漆中将铅除去。
电子工业界一直以来也受到环境保护的影响。例如前些时候关注的氯氟碳化合物CFC,卤素,挥发性有机化合物VOC等的废除和控制工作。如今更是在消除含铅的课题上做了不少的工作。无铅技术的发展,不论在经济、材料技术、工艺技术、生产设备、质量管理、设计、市场、采购,甚至在立法上都造成一定的影响。可以说是电子制造业中,自SMT技术出现以来影响最大的改变。
环保和无铅技术的发展动力
新技术的推动总会带来技术风险,初期的成本压力,以及必须面对改变的心理压力等等问题。当电子制造业界似乎有点茫然、冲动的对焊接的无铅化进行研究的同时。却有另外的一些人对这方面的无铅需求提出怀疑。而提出怀疑的原因是,电子组装业中,铅的使用主要来自焊接中的焊料和器件、PCB焊端材料。而这方面的铅用量,也不过占总铅使用量的1%左右(铅的最大用量在电池方面,约占8成)。而用来在焊料中替代铅的其他金属,例如银、镍、镉、锑等也都含有危害健康的毒素。根据美国环保局的测试结果,银和锑在所有测试中无一达到环保要求。因此曾有份报告说,“在电子组装业中推动无铅技术,相当于使人类多花些钱来换取一些铅毒以外的中毒选择”。一些以美国为主的机构认为,人类对于使用在电子产品中的铅通过环境给人体健康造成的危害的课题,所做的研究十分缺乏,完全只是出于一种感觉上的忧虑。因为铅虽然对人体有害,但未必容易通过环境污染的途径造成。事实上,美国近年来的一些环保研究工作,其结果发现电子产品中铅造成的环境污染程度是十分小的,合乎美国环保局的标准(约只达极限的10%程度以下)。另一方面,从无铅技术从目前的情况看来,它将会给人们带来较高的成本。这些成本来自材料(铅是十分经济的金属)、设备、学习、研发、质量管理等等。加上由于无铅技术难度较高,不免造成质量浪费较大,在这回收(再循环)技术尚未成熟的时候也同时加快了人类对地球资源的消耗(这也包括一些较稀有金属如铟等的使用)。所以一些人对于是否值得在此刻对电子焊接进行无铅化提出质疑。美国企业界一般处于这种心态。
市场考虑也是无铅发展的动力之一。虽然最初的研究开发也许主要为了环保,但当研发到某些程度后,市场就逐渐形成了竞争差异。而市场或经济竞争就也成为推动无铅的重要动力之一。曾有权威经济报认为,日本的电子业,将借助无铅技术的推动而改变其竞争压力的不良趋势。这是由于日本在无铅技术的研发上,系统性强和做得比其他国家来的出色。也就是说在技术整合,在技术和采购整合上都处于较有利的地位。而事实上,日本的一些企业,例如松下和东芝等,都已经在其某些产品上,借助无铅技术而赢得良好的西方市场。而事实上,我们从日本国内上下的活动中也可以看出,日本企业界一般属于注重市场动力的一群。
一般相信,目前来讨论是否应该推行无铅技术已经是为时已晚。政府和业界的投入,以及商业活动已经使无铅势在必行。我们可以用一句话来代表面前的情况。就是“要嘛把铅去掉,要嘛交易免谈”。
主要经济体的态度和行动
技术的逐步成熟,市场的诱惑,市场竞争压力,供应的转变,国家的立法以及保护主义将使得无铅技术的广泛采用成为必然的结果。所以即使不太认同电子组装业需要进行无铅化的国家或企业,也都不敢完全放弃有关方面的研究和跟进。虽然大家都为推行无铅化而前进,但代表全球工业的欧、美、日三大经济体的做法不尽相同。
欧洲共同体在国家和工业界的紧密配合方面,以及在立法和教育上做得较好。例如在回收(再循环)法规和管理工具上,经济奖励等方面投入比美、日都多。在研发方面的投入,欧盟十分注重系统性的运作研发,尤其是在针对环保设计方面的工作。欧盟中不论是在企业或国家对相关的教育培训的资助都较美、日来得强。
日本方面,除了在回收(再循环)技术和立法方面做了较多工作外,国家政府对工业界的协助则不如欧盟国家。工业界本身则十分关注对ISO14000之类的遵从和能量方面的节省。日本企业界有一个特点,就是十分注重环保工作和企业营业策略配合,许多大企业都将环保列为一个竞争手段。而在研发工作上,日本较关注也是在应用科学方面,基础研究不如欧美地区。
美国在无铅方面,早期一直抱着观望的态度。这和先前提到的不认同电子组装业应该采用无铅化方向的心态有关。所以在许多方面的发展投入以及推动力远不如欧、日地区。这状况一直到了1999年,当美国意识到无铅课题所带来的商务或经济影响更超越环保意义时,才在几个全国性的重大会议后大量的投入相关的研发。美国的研发焦点在材料和材料应用上。
至于其他地区和国家,由于本身的技术、经济能力有限,以及对全球市场供应和作为用户的影响力相对不足。在无铅课题上只能看着以上三大经济体的方向而选择何时跟进。而这所谓的“选择”往往也较被动。
推行无铅的压力
由于无铅的推动并不一定给所有企业带来好处。所以许多企业在这课题上并不主动。而最终是由于压力下才转使用无铅技术的。压力可能来自三方面,一是需求市场,二是竞争市场,三是供应市场。
需求市场压力即是客户的要求。例如目前已经开始有些来自日本和欧洲的客户要求必须使用无铅技术或产品了。除非您不做他们的生意,否则没有选择。
竞争市场则是同业中竞争对手们已经采用或有能力采用无铅技术,同时以无铅技术作为竞争手段。这时虽然有些客户未必要立刻要求无铅技术,但既然供应商能够提供,而如果成本负担又不增加或在合理范围内时,也许会有些吸引力。这就给那些无法提供无铅的供应商造成了竞争压力,使他们不得不也推行无铅技术。
供应市场的压力会也是个重要的因素。也许目前已经有好些用户已经见到这方面的问题了。就是某些器件或材料已经转供应无铅的,含铅的已经停止供货了。而这种情况会随着无铅的逐渐普及化而更严重,最终将会使那些即是不想转换的用户也必须进入无铅。受到这因素影响最重的是那些需要确保高产品寿命质量的工业,例如军品、医疗设备、航天、航空等等。这些行业占电子业产量只约1%,在无铅对产品寿命的影响程度还未很好的确定的情况下,如果这样小的市场无法争取到供应界的支持,对这些行业的生产将是个问题。
不论动机是真正的为了环保,或是商业行为,以上的压力所提供的信息很清楚----不论您是否愿意,最终大家都要采用无铅!
无铅技术带来的改变
既然无可避免的必须转向无铅技术,那么无铅带来的改变和影响应该是大家首先最该关心的。在电子组装业的发展过程中,上一个影响面较大的改变是SMT的出现。那是个“革命性”的改变。如今的无铅技术带来的并不全是革命性的转变,这点是用户所应该搞清楚的。在一定程度上,它还是属于一个“发展”(Evolution)技术。也就是说无铅技术是从现有的含铅SMT技术上发展而来的。自有SMT技术时代开始,快速扩张的用户市场,使工业界已经认识到“革命”式改变的害处。所以在研究开发新技术时总千方百计的使其保留有高程度的旧方法(或至少能使用旧经验)。因此无铅技术中仍有大部分工作或技术是属于“发展”(Evolution)而非“革命”(Revolution)。表一从不同方面来看无铅技术,并说明其属于革命性或发展性特性。
技术领域或企业功能 | 革命性改变 | 发展性改变 |
材料技术 / 可靠性 | √ | |
DFM / DFR 设计 | √ | |
组装工艺 | √ | |
设备技术 | √ | |
市场 | √ | |
采购 | √ |
表一:无铅技术的发展特性
具备较多的“发展性”当然是件好事,表示我们可以更好的利用以往的经验。然而对于无铅技术来说,这却也非简单。在SMT的发展过程中,我们已经有经历过几次影响较大的“发展”经验,例如免清洗技术、栅阵排列焊端技术(BGA)、Flip-Chip等等。有些用户可能对于这些技术带来的挑战还记忆犹新。但无铅技术的到来,和以前的几个技术相比之下,其难度和挑战绝对是有过之而无不及。
认识表一中的特性,对于新的无铅用户是重要的。因为技术的引进需要经历一个准备期和过渡期,而什么应该加强,什么可以放弃等等的管理决策和准备功夫,都必须建立在对该技术的发展或革新的特性认识上。
材料上的影响和改变
无铅技术在应用上的最大改变是材料在其特性上和种类多样化上的变化。尤其在焊料合金方面研发成果十分多。虽然目前还没有一种合金焊料能够和含铅焊料一样‘好’,但可以替代(可以满足应用)的有许多。据笔者了解已经有超过50种不同的合金申请了专利。这么多的选择,估计最终还只是少部分会被SMT界较广泛的接收。从目前的情况看来,业界比较认同的有Sn/Ag,Sn/Cu,Sn/Ag/Cu,Sn/Ag/Cu/X(X表示其他金属如铋、铟等),Sn/Ag/Bi,Sn/Ag/Bi/X(X表示其他金属)。我们在将来的文章中会较具体的讨论这些材料的不同和强弱点。
焊料中除了合金是个考虑和选择重点外,焊剂Flux也不应该被忽视。不同的合金有不同的密度重量,有不同熔化表面张力,不同的熔点温度,和不同的氧化特性。这也就告诉我们焊剂Flux的配方会出现不同于含铅的情况(注一)。由于焊剂配方一直是个锡膏供应商竞争的商业机密,用户不容易知道其实际的特性。但可以预见的,是这方面的改变会对焊接工艺起较大的影响,锡膏印刷工艺次之。对于贴片工艺,估计影响十分轻微。只在某些特定应用上才可能会出现需要特别照顾的。
材料除了焊料外,主要的还有器件以及PCB。在器件方面,有两个需要给于关注和考虑的。一是器件焊端的材料种类和成分,另一是器件本体的耐热问题。焊端材料方面,即使在含铅技术中,并不是所有的焊端都采用含铅的金属,例如常用的Ag/Pd,Ni/Au,以及Sn,Ni/Pd,Ni/Au/Cu等等都不含铅的成分。而这些材料都确认能够和某些无铅焊料兼容使用。所以在器件焊端材料上,我们所面对的问题不是太棘手。不过最少还是有三方面的问题困扰着我们。首先是模块器件(例如过滤器、震荡器、保护电路等)的一级组装问题。由于这些器件可能在二级组装时会再度经过焊接所需要的高温处理,所以一般必须使用较二级组装焊接所需焊接温度更高的熔点的合金焊料。而目前这方面的研发远远不及二级组装技术的研发投入的多。而且由于温度更高,对所有材料的耐热性要求又更高了。这也进一步增加难度。虽然目前有解决方案,但高温无铅焊料种类少、成本很高。
器件的第二个问题,是在过渡期间无铅和有铅混合的问题。由于无铅和含铅材料并不完全兼容,所以这混合会带给我们某些问题。例如温度承受能力不足,焊点不良,以及“铅污染”等。
第三个问题,是无铅技术在焊料合金上出现了许多种选择,而这些器件的焊端材料,各种焊料和哪些器件焊端材料能够兼容,兼容程度有如何,其中组合众多,目前的测试资料还是有限。这增加了用户的选择风险和困难。
器件整体的耐热也将是个考虑重点。由于无铅焊料的熔点一般高出含铅许多(较可能通用的会有30~40oC的提高),意味着在焊接时温度提高许多。含铅技术中使用的器件,未必能承受得起这提高的温度(事实上含铅技术下的器件并没有确保能够承受无铅的温度,也因此许多材料并不能承受这高温)。所以除了焊端材料必须是无铅,以及和所使用的无铅焊料需要兼容外,器件本体封装等材料也必须承受得起所需要的焊接热能(即温度和时间)。
PCB方面的影响也有二。一是焊盘的防氧化保护层。在含铅技术中常用的锡铅热风整平技术,由于含铅而一定要被除去。但一些也被使用的材料和技术,如电镀镍金、化镍浸金、浸镀银、浸镀锡等都有许多试验结果支持其在无铅技术中的应用。只有OSP(有机保焊层)技术,由于种类和工艺较多,而有些承受不了无铅的高温作业(尤其是双面回流工艺),用户必须较小心的认证选择。业界发表的有些试验报告,也说明了某些OSP使用在无铅高温下不是问题,甚至可以承受4次以上的无铅回流高温(IPC/JEDEC的J-STD-020C标准)。
PCB的第二个考虑,是基板材料对无铅高温的承受能力。在更高的焊接温度和可能更长的焊接时间情况下,传统常用的FR4可能会出现不能接受的变形或开始变色(外观问题)。所以有些产品,基于外观质量要求,设计难度等理由,也许必须转而使用Tg较高的FR4或FR5基材。
无铅技术在组装工艺上的影响
无铅在工艺上带来的较大改变,是在焊接工艺上。这改变出于无铅焊料熔点上的变化,以及较不被关注的焊剂配方的转变上。较高的焊料合金熔点使焊接温度必须提高,而这温度需求的提高,加上焊剂的新配方,也影响前工序的预热和助焊工艺。而焊接温度的提高,使许多器件材料处于较高的过热风险下,工艺窗口变小了,所以加热工艺的调整要求也提高了。这意味着什么呢?对于用户来说,虽然掌握焊接的原理不变,但以往的焊接工艺规范已经不能使用而必须重新进行工艺认证。
曾有报告和论文指出,无铅在锡膏印刷和贴片工艺上没有什么改变。这说法并不完全精确。锡膏印刷方面,无铅带来的改变虽然不会有焊接来得大,但对于一些工艺要求较高的产品来说,我们还是可以看出无铅和含铅是有些不同的。这种差异其实也存在于含铅技术中不同锡膏牌子型号之间。因为造成这种工艺差异是来自锡膏的配方差异。在无铅技术中,无铅合金材料不同的熔点温度、不同的表面能量(张力)、不同的金属密度(重量)等给锡膏焊剂配方带来改变的必要。而这质和量上的改变,也使一些锡膏的粘性和流变性产生变化。而锡膏印刷工艺的要点就是掌握和处理锡膏的流变性。所以无铅其实也给印刷工艺带来改变。即是您使用的锡膏牌子不变,但其配方的改变将使您的工艺需求改变,关键在于您的产品对印刷工艺的要求是否需要细腻的设置和控制。
由于器件方面在无铅技术中的改变主要在于耐热能力的加强,焊端材料改变不多,贴片工艺的影响应该十分轻微。唯有在器件工艺特性(注二)处于工艺临界的情况下,贴片压力可能需要更严谨的调整,以补无铅润湿能力较差的特性。
至于波峰焊接工艺方面,焊料熔点增高了之后,助焊剂配方也受到影响。因此预热和焊接工艺参数都必须重新处理。试验中发现“阴影效应”情况会较含铅技术严重些。这可能需要PCB工艺设计上较好的配合。
其实无铅在工艺设置、工艺调制方法上都没有什么改变。您所需要的只是重新制定您的参数和工艺规范罢了。我往后的文章会在工艺上和读者们分享较深入的知识经验。
无铅在DFM和外观检验上的影响
无铅焊料在焊接特性(如润湿性等)和含铅有所差异,如果要很好的处理工艺,在DFM规范上也必须有所改变。例如回流中“立碑”、“气孔”等现象以及波峰焊接中的“阴影”现象,在无铅焊接技术中会较严重,如果通过DFM的修改配合,可以很好的预防和解决这类问题。
在DFM中的焊盘和钢网设计部分,由于和焊接工艺密切相关,无铅的出现因此也带来一些影响。此外,一些检查标准,包括MVI和AOI等,也都会有些改变。这是因为无铅焊点的表面状况(光滑度和润湿度)都没有含铅焊点的理想(但不表示有质量问题),所以检验标准也应该给于修改。
无铅在组装设备上的影响
作为支持工艺的设备,主要是在回流炉和波峰焊接炉方面,也因为工艺窗口的缩小而受到影响。基本上是对其工艺控制能力的要求提高了。例如回流炉子的高温能力、加热效率和冷却控制等,以及波峰炉子的预热能力,以及第一波设计和控制等,都必须有较好的表现。而除了工艺能力外,炉子中和无铅锡有直接接触的部分也必须采用适当的材料来抗其腐蚀性。对炉子制造商来说,提高加热温度和采用不同的熔锡槽材料是无铅技术的改革重点。目前推出的炉子,许多都表示可以支持无铅技术。而这所谓能支持无铅技术,很多也就是说能够提供更高的温度以及采用抗腐蚀材料而已。对于更好处理缩小的工艺窗口的加热效率等等特性则未必有改进措施。我曾对两类炉子进行测试,发现其加热方面的工艺能力,其实和上一代含铅技术的型号并没有改变,甚至更不理想的,是在增加后的高温部分,能力还不如原先的(注三)。了解设备真正能力对用户十分重要,这是用户所必须给于注意的。
无铅技术上的总体状况
无铅技术自研发以来,目前对于民用家电以及一些不牵涉人命安全的电子产品上,已经算是门可以被大量使用的技术。焊料上的选择虽然还属于复杂,业界要达至认同善需要一些努力,但趋势已经逐步形成,供应也开始普及。PCB无铅化技术也已可行。器件无铅化,虽然结果尚未及无铅技术理想,暂无法在成本、质量、工艺各方面找到单一优化的选择。但工艺和质量水平已经基本被业界接受,无铅器件供应也逐步普及。设备方面,受到主要挑战的焊接设备,情况类似器件,虽然还有待改善,但基本能力已有。质量认证方面,在较温和测试条件(温度范围在0~100oC之间)下,大多数无铅技术在大部分测试特性的表现下可比美含铅技术,甚至有些表现还更好。不过有关产品长期寿命方面的认证,虽然已经有相当的信心,还有待更多的研究以及实际使用观察来确定。例如除去铅后高锡含量的金属须(或称金属针)问题还没有真正有效的解决方法。所以在高质量要求,或关系到人命安全的产品上,无铅技术的使用仍然需要进一步研究决定。而对于寿命要求不太高的家电或民用产品,则无铅基本被认为是可行的技术。 $Page_Split$
无铅技术在商业上的影响
无铅技术的推动,目前已不再纯属环保考虑,而是包含了相当成分的经济和商务意义。无铅技术发展的较好以及能力较强的国家地区,已意识到它可以成为有理的贸易壁垒。而由于无铅技术所需要的是整体供应、工艺、设备等的系统性,谁能够较好的掌握和建立这系统性,对谁就有较好的竞争能力。
和当时Flip-Chip技术的开发一样,企业们为了在新技术上多占些甜头,纷纷为其科研结果申请专利。不过由于有了以往的经验,“通用”和“普及”性已成为另外一个业界所关注到的重要特性。在这认识下出现了一个有趣的现象。就是以往的“专利”政策的失利。无铅技术的发展焦点在于焊料技术,因此初期许多研究都起于焊料的研究。可用的焊料合金种类很多,各有好坏。而各个开发商为了确保本身的利益,纷纷对其研究成果申请专利。然而,为了避免采购风险,业界在后期的推动和推荐材料工作上,认同采取了不采用“专利”配方作为其中一个考虑点的做法。
无铅的加工成本会较含铅来得高,但所幸增长不算多。技术和环保虽然重要,但电子业界中价格仍然是个最重要的竞争武器。谁能将无铅转换的成本透明化,谁就较具有竞争力。所以无铅的出现,也给业界带来一次成本重整的机会。
无铅技术推行的问题
推行无铅技术的用户将会遇到几个方面的难处。
1.众多的材料的组合和选择要求用户对各种材料技术有足够的了解。但众多的可能组合以及有限的实验报告资料无法很好协助用户做出仔细精确的判断;
2.无铅技术在技术以及技术和管理的整合做法上更加重要,但作为业界引进这门技术主要资源和依赖的供应商,一般缺乏提供技术整合上的协助。这包括一些已集团形式出现在市场的供应商在内。其整合做法较偏向于商务方面而非技术及管理上的整合;
3.大多数的用户都没有意识、计划或能力投入在无铅技术质量方面的研发工作,而业界提供这方面服务的机构,在相对用户素质和数量的质和量上都还缺乏,无法有效的降低无铅的质量风险;
4.过渡期的管理和技术应用将是个大问题。由于无铅和含铅并不完全兼容,而产品设计工作,以及供应市场上并不可能做到同时的技术切换,同时使用无铅和含铅技术的情况是存在的,如何使这两种并不完全兼容的技术同时存在是个管理和技术应用上必须小心处理的;
5.工艺能力的掌握。无铅工艺的窗口,尤其在必须很好的照顾产品寿命的情况下,较含铅技术小了许多。这就要求用户对工艺的掌握以及质量管理上有更细腻的做法。
无铅对一般国内用户的影响
中国电子业界在无铅技术上向来是观望多于投入。这和其市场背景与定位有关。随着无铅推行的逐渐明朗化以及来自其他经济体的商务压力,中国电子业界广泛采用无铅技术的日子也越来越近了。一般相信,中国有可能会跟着欧洲的期限和步伐。也就是在2006年7月1日要求较全面的采用无铅技术。我个人觉得这期限对中国来说是急了些。这或许是因为对于业界所需要做的工作还没有深入的分析的缘故。不论如何,这期限是否会落实还说不准,就看到时的经济和供应压力,以及业界的担心程度了。
如表一中所示,无铅在好些方面原是“发展性”而非“革命性”。这本对用户有利,但这有利情况未必适合于好些国内用户。原因是,虽然无铅技术是从现有SMT技术发展来的,但其在多方面对技术的要求,较现有含铅技术高得多。而国内一般用户,自接触引进SMT以来,处于一种“重设备、轻工艺”的风气、环境之下。SMT的应用和管理都处于一种浮于表象的状况。对于工艺研究、技术整合、工艺管理等等都没有足够的重视以及缺乏很好的学习条件和机会,也因此就说不上很高水平的掌握了。从事电子板组装加工业多年的用户必定感受到,SMT的生产问题(工艺、质量、设备等各方面),较THT时代多出许多。厂内的SMT问题,似乎是此起彼伏,重复出现。造成这种状况的主要原因,是在技术管理上没有很好的认识到从THT发展到SMT过程中所带来的巨大变化。而没有很好的针对SMT的特点来进行管理。这种现象,也很有可能进一步延续到无铅时代,除非在目前的过渡期中,业界在目前的工艺和管理掌握上能够有较好的认识和改善。
无铅的引进效率和效益必须赖于良好的技术研发、认证和管理工作。中国SMT用户在这些方面都不是强项。因此估计将来的救火成本会提高。对于一些行业来说,这可能会增加原本就不大的利润压力。所以用户面对的,不只是一个技术改革,同时也是个成本重组的竞争变化。
国内所面对的问题,仍然会和当初引进含铅SMT技术时一样。差别在于无铅技术中的问题较明显化。无铅在工作量上是增加了,但工作方法并没有多大的改变。所以对于那些已经很好掌握方法的用户,无铅不会带来太大的问题。而对于那些还不了解SMT及其管理的用户来说,情况似乎也改变不多。以往的工艺质量问题还一样的存在,每天还一样的在救火,企业还依赖技术以外的手段竞争生存。。。一直到其他对手改变了再随后改变。
后语
虽然有不少争议,虽然期限一再展延,虽然无铅的意义从环保意识逐渐偏向商务意识,但无铅技术的大量采用应该是个必然的事。从整体的考虑上,无铅在寿命要求不是特别高的产品上已属可行的技术,供应方面也已经逐渐普及。我们可以说已经到了无铅时代的门口。
对于这必然出现的改变,扮演跟随角色的中国SMT界也开始面对推行的压力。如果目前的2006年中作为期限的目标的推测属实,对于中国SMT用户来说,时间已不多了。这是因为无铅技术的引进并不是件容易处理的事。它牵涉到的不只是用户本身内部的调整,而是整个供应链和系统性的设计和建设,以及强化以往可能忽略的技术和管理基础(这可是中国SMT界比先进工业国需要多付出时间和努力的一部分)。
本文和读者们分享了无铅发展的情况以及一些使用前应该知道的要点。我往后的文章还会给大家分享无铅在管理上、技术原理上、以及应用上的其他知识和经验。但读者如果希望更全面、更仔细、更快的学习到相关的知识,或有需要在推动无铅技术应用和管理上得到帮助的,可以联系KIC公司(注四)或本人。
-----------------------------------------------------------------------------
注一:焊剂Flux是个统称。锡膏中Flux包含许多不同功能的成分,如载体、溶剂、稀释剂、稳定剂、助焊剂等等。这多种成分的组合,多种可选材料,就造成多种不同的Flux配方。
注二:器件工艺性指的是和SMT工艺相关的特性,例如外形、尺寸、重量、焊端形状、焊端材料等等。
注三:热风回流炉子的能力,除了温度控制外,空气的对流程度和控制是个同等重要的特性。尤其是高温时,要有足够传递热能,必须要借助良好的热气对流。所以一般气流不理想的炉子,在高温时更容易显示出其弱点。
注四:KIC是家美国公司,为业界提供炉温测试和监控系统,协助用户在焊接技术上的工艺设置、调制和管制工作。从2005年起,该公司也将在中国地区提供用户在焊接工艺和管理上的协助。包括含铅和无铅技术。