所有的回流炉都有一个冷却模块来保证冶金特性和降低出板温度。在空气炉中,过程气体在冷却之前排出,在冷却模块中不留下助焊剂冷凝。可是,在多数氮气炉中,排气发生在炉的进口和出口处,问题就发生了。受热的助焊剂挥发物侵入冷却模块,然后将冷气指向产品。保存氮气的要求不得不使内部气体循环使用,因此过程气体在冷气之前是不排出去的。当这气体流到冷气区时,出现冷凝。
虽然该技术工作正常,连续的循环造成热交换器被过程气体中的助焊剂元素淤塞。对一些新的增强的可印刷锡膏,留下极其粘性的残留,这种淤塞甚至更成问题。不幸的是,当这些系统淤塞发生时,冷气性能将稳步下降,造成缺乏回流工艺的一致性和控制。除了处理较热的板之外,减弱的冷气引起印刷双面表面贴装装配的问题,和可能由于减少液化以上时间(TAL, time above liquid)而影响长期电路装配的可靠性。证据显示,增加TAL可造成粗糙的焊点微结构和增加金属间增长,这可能导致脆性。
在某种意义上,预防性维护热交换器清洁是重获过程控制所要求的。这个过程是肮脏和费时的,可能要求在珍贵的生产时间之外每周达几个小时。如果这个维护不进行,将造成元件灾难性的的失效,要求许多无计划的停机时间。因为固定资产设备的利用时间是可获利的关键,将冷却模块维护减到最少是所希望的。如果机器停下来进行计划或非计划的维护,都不可能产生利润。减少维护的一个可能方法是通过使用集成化助焊剂管理(IFM, integrated flux management)系统来加强冷气模块的设计。如在基本的惰性冷却一样,过程气体是通过一个热交换器循环的;可是,在这个系统中热交换器可移动到实际炉膛的外面,增强一个过滤单元。用IFM,许多未处理的过程在冷气室之外冷凝,将所要求的维护移出到过程冷却模块区外面。通过把助焊剂副产品移到IFM系统的过滤装配作为废物最终处理,热交换器的清洁要求大大地减少了。
虽然该技术工作正常,连续的循环造成热交换器被过程气体中的助焊剂元素淤塞。对一些新的增强的可印刷锡膏,留下极其粘性的残留,这种淤塞甚至更成问题。不幸的是,当这些系统淤塞发生时,冷气性能将稳步下降,造成缺乏回流工艺的一致性和控制。除了处理较热的板之外,减弱的冷气引起印刷双面表面贴装装配的问题,和可能由于减少液化以上时间(TAL, time above liquid)而影响长期电路装配的可靠性。证据显示,增加TAL可造成粗糙的焊点微结构和增加金属间增长,这可能导致脆性。
在某种意义上,预防性维护热交换器清洁是重获过程控制所要求的。这个过程是肮脏和费时的,可能要求在珍贵的生产时间之外每周达几个小时。如果这个维护不进行,将造成元件灾难性的的失效,要求许多无计划的停机时间。因为固定资产设备的利用时间是可获利的关键,将冷却模块维护减到最少是所希望的。如果机器停下来进行计划或非计划的维护,都不可能产生利润。减少维护的一个可能方法是通过使用集成化助焊剂管理(IFM, integrated flux management)系统来加强冷气模块的设计。如在基本的惰性冷却一样,过程气体是通过一个热交换器循环的;可是,在这个系统中热交换器可移动到实际炉膛的外面,增强一个过滤单元。用IFM,许多未处理的过程在冷气室之外冷凝,将所要求的维护移出到过程冷却模块区外面。通过把助焊剂副产品移到IFM系统的过滤装配作为废物最终处理,热交换器的清洁要求大大地减少了。