形成孔隙通常是一个与焊接接头的相关的问题。尤其是应用SMT技术来软熔焊膏的时候,在采用无引线陶瓷芯片的情况下,绝大部分的大孔隙(>0.0005英寸/0.01毫米)是处于LCCC焊点和印刷电路板焊点之间,与此同时,在LCCC城堡状物附近的角焊缝中,仅有很少量的小孔隙,孔隙的存在会影响焊接接头的机械性能,并会损害接头的强度,延展性和疲劳寿命,这是因为孔隙的生长会聚结成可延伸的裂纹并导致疲劳,孔隙也会使焊料的应力和协变增加,这也是引起损坏的原因。此外,焊料在凝固时会发生收缩,焊接电镀通孔时的分层排气以及夹带焊剂等也是造成孔隙的原因。
在焊接过程中,形成孔隙的械制是比较复杂的,一般而言,孔隙是由软熔时夹层状结构中的焊料中夹带的焊剂排气而造成的(2,13)孔隙的形成主要由金属化区的可焊性决定,并随着焊剂活性的降低,粉末的金属负荷的增加以及引线接头下的覆盖区的增加而变化,减少焊料颗粒的尺寸仅能销许增加孔隙。此外,孔隙的形成也与焊料粉的聚结和消除固定金属氧化物之间的时间分配有关。焊膏聚结越早,形成的孔隙也越多。通常,大孔隙的比例随总孔隙量的增加而增加.与总孔隙量的分析结果所示的情况相比,那些有启发性的引起孔隙形成因素将对焊接接头的可靠性产生更大的影响,控制孔隙形成的方法包括:1,改进元件/衫底的可焊性;2,采用具有较高助焊活性的焊剂;3,减少焊料粉状氧化物;4,采用惰性加热气氛.5,减缓软熔前的预热过程.与上述情况相比,在BGA装配中孔隙的形成遵照一个略有不同的模式(14).一般说来.在采用锡63焊料块的BGA装配中孔隙主要是在板级装配阶段生成的.在预镀锡的印刷电路板上,BGA接头的孔隙量随溶剂的挥发性,金属成分和软熔温度的升高而增加,同时也随粉粒尺寸的减少而增加;这可由决定焊剂排出速度的粘度来加以解释.按照这个模型,在软熔温度下有较高粘度的助焊剂介质会妨碍焊剂从熔融焊料中排出,因此,增加夹带焊剂的数量会增大放气的可能性,从而导致在BGA装配中有较大的孔隙度.在不考虑固定的金属化区的可焊性的情况下,焊剂的活性和软熔气氛对孔隙生成的影响似乎可以忽略不计.大孔隙的比例会随总孔隙量的增加而增加,这就表明,与总孔隙量分析结果所示的情况相比,在BGA中引起孔隙生成的因素对焊接接头的可靠性有更大的影响,这一点与在SMT工艺中空隙生城的情况相似。
总 结
焊膏的回流焊接是SMT装配工艺中的主要的板极互连方法,影响回流焊接的主要问题包括:底面元件的固定、未焊满、断续润湿、低残留物、间隙、焊料成球、焊料结珠、焊接角焊缝抬起、TombstoningBGA成球不良、形成孔隙等,问题还不仅限于此,在本文中未提及的问题还有浸析作用,金属间化物,不润湿,歪扭,无铅焊接等.只有解决了这些问题,回流焊接作为