电磁屏蔽
从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨着电源层或接地层。对于电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层”策略。
PCB 堆栈
什么样的堆栈策略有助于屏蔽和抑制 EMI ?以下分层堆栈方案假定电源电流在单一层上流动,单电压或多电压分布在同一层的不同部份。多电源层的情形稍后讨论。
4 层板
4 层板设计存在若干潜在问题。首先,传统的厚度为 62mil 的四层板,即使信号层在外层,电源和接地层在内层,电源层与接地层的间距仍然过大。
如果成本要求是第一位的,可以考虑以下两种传统 4 层板的替代方案。这两个方案都能改善 EMI 抑制的性能,但只适用于板上组件密度足够低和组件周围有足够面积 ( 放置所要求的电源覆铜层 ) 的场合。
第一种为首选方案, PCB 的外层均为地层,中间两层均为信号 / 电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也低。从 EMI 控制的角度看,这是现有的最佳 4 层 PCB 结构。第二种方案的外层走电源和地,中间两层走信号。该方案相对传统 4 层板来说,改进要小一些,层间阻抗和传统的 4 层板一样欠佳。
如果要控制走线阻抗,上述堆栈方案都要非常小心地将走线布置在电源和接地铺铜岛的下边。另外,电源或地层上的铺铜岛之间应尽可能地互连在一起,以确保 DC 和低频的连接性。
6 层板
如果 4 层板上的组件密度比较大,则最好采用 6 层板。但是, 6 层板设计中某些迭层方案对电磁场的屏蔽作用不够好,对电源总线瞬态信号的降低作用甚微。下面讨论两个实例。
第一例将电源和地分别放在第 2 和第 5 层,由于电源覆铜阻抗高,对控制共模 EMI 辐射非常不利。不过,从信号的阻抗控制观点来看,这一方法却是非常正确的。