6.3高温熔焊(Reflow)
6.3.1概说
是利用红外线、热空气或热氮气等,使印妥及已黏着各引脚的锡膏,进行高温熔融而成为焊点者,谓之“熔焊”。80年代SMT兴起之初,其热源绝大多数是得自发热效率最好的辐射式(Radiation)红外线(IR)式机组。后来为了改善量产的质量才再助以热空气,甚至完全放弃红外线而只用热空气之机组者。近来为了“免洗”又不得不更进一步改采“热氮气”来加温。在其能够减少待焊金属表面的氧化情形下,“热氮气”既能维持质量又能兼顾环保,自然是最好的办法,不过成本的增加却是无比的杀伤力。
除了上述三种热源外,早期亦曾用过蒸气焊接(Vapor Soldering),系利用高沸点有机溶剂之蒸气提供热源,由于系处于此种无空气之环境中,不会氧化之下既无需助焊剂之保护也无需事后之清洗,是一种很清洁的制程。缺点是高沸点(B.P.)溶剂(如3M的FC-5312,沸点215℃)之成本很贵,且因含有氟素,故长期使用中免不了会裂解产生部份的氢氟酸(HF)之强酸毒物,加以经常出板面小零件之“竖碑”(Tombstoning)不良缺点,故此法目前已自量产中淘汰。
还有一种特别方法是利用雷射光的热能(CO2或YAG),在非焊枪式的接触下,可对各单独焊点进行逐一熔焊。此法具快热快冷的好处,而且对极微小纤细的精密焊点相当有利。对于一般大量化之电子商品则显得非常不切实际了。其它尚有类似手工焊枪式做法的“热把”(Heat Bar)烙焊,系利用高电阻发热的一种局部焊接法,可用之于修理重工,却不利于自动化量产。
6.3.2红外线与热风
常见红外线可按其波长概分为:
(1)波长为0.72~1.5µm接近可见光的“近红外线”(Near IR)。
(2)波长1.5~5.6µm的“中红外线”(Middle IR)。
(3)以及热能较低波长为5.6~100µm的“远红外线”(Far IR)。
红外线焊接的优点有:发热效率高、设备维修成本低、“竖碑”之缺点较蒸气焊接减少、并可另搭配高温热气体共同操作。缺点为:几无上限温度,会常造成烧伤,甚至导致待焊件过热的变色变质,且也只能焊SMD无法焊PTH之插装组件脚。
IR的热源有日光灯式长管状的T3钨丝灯管,属Near IR直晒热量很大,但也容易出现遮光而热量不足的情形。其次是镍铬丝(Nichrome)的灯管,属Near或Middle之IR类。第三种是将电阻发热体埋在硅质可传热的平板体积中,属Middle/Far之 IR形式。此全面性热量,除了正面可将热量凌空传向待焊件外,其背面亦可发出并针对工作物反射热能,故又称为“二次发射”(Seconding Emitter)。使各种受热表面的热量更为均匀。
由于红外线在高低不同的零件中会产生遮光及色差之不良效应,故还可吹入热风以调和色差及辅助其死角处之不足处,并可进行PTH之插焊;因而使得早先之单纯IR者几乎为之除役。所吹之热风中又以热氮气最为理想,其优点如下:
(1)大幅减少氧化反应,故助焊剂已可减量使用,并亦减少清洗及降低锡球。
(2)无氧环境中助焊剂被点燃机率减少,故可提高焊温(如300℃)加快输送速度。
(3)树脂表面变色机率减少。
6.3.3自动输送流程:
联机熔焊之整体温度变化曲线(Profile);有预热(吸热),熔焊及冷却等三大阶层。每阶层中又有数个区段(Zones),区段较少者(3-4段)输送速度较慢(26cm/min),区段较多者(7段以上)则速度加快(接近50cm/min)温控也较准确。一般批量者以6段较合适。全线行经的时间以4~7分钟之间为宜。
预热可使板面温度达150℃,而助焊剂在120℃中90-150秒内即可发挥活性去除锈渍,并能防止其再次生锈。板材的Tg温度愈高愈好,因超过Tg以上的塑料材料,不但会呈现软化之塑性而大大伤害到尺度安定性,且各方向(X.Y.Z)的膨胀加剧下PTH也容易断孔。每种不同料号板面,均有其最佳的输送速度,但一般性熔焊区之停留时间可规定在30~60秒之间,焊温以220℃为宜。量产前应分别订定出实用标准作业程序(SOP)。