随着底部PoP的处理器性能和容量持续增高,裸片的面积越来越大,即使晶圆工艺尺寸从90 nm缩减到65 nm甚至以下,这些都造成很难在12×12 mm或更小的封装体内安置器件,而这正是目前所需要的。扇入PoP解决方案(底部PoP的顶部表面上的焊盘不在四周,而在中心)已经开始研发,为获得更小、更高密度的PoP器件以及更大的裸片与封装比率(图4)。扇入PoP也能够达到一个更小的、更大成本效益的中间BGA顶部PoP。因为模塑密封或者封装顶部的表面可扩展到封装边缘,已经证明,这类封装比传统PoP解决方案的翘曲更小。扇入PoP的另一优点是在顶部叠层封装上能够 容纳更高数目的互连。这无需增大封装体即可获得,因为顶部中心互连阵列间距为0.5 mm,甚至0.4 mm。这允许处理器到处理器封装叠层或者处理器到高引脚数的存储器接口,这是手机制造商的关键技术。在某种意义上讲,类似扇入PoP的PoP变化正在担负基板内嵌入元件的任务,而扇出晶圆级封装方法则将目标致力于填补未来。
结论
作为一种封装形式,PoP早已出现,但将在数年内成为在手机中处理器与存储器组合的主流封装形式。许多新产品将采用PoP形式发布,引入PoP中新的变化可以满足更小尺寸、更低高度、更高性能、更加精细焊球间距和引脚数目等方面的要求。新材料的引入及改进将有效的缓解封装的翘曲问题,并且新型表面贴装技术也有助于达到满足要求的板级组装良率。PoP正在从手机应用扩展到其他的手持设备和存储应用中,并且这种趋势将有可能继续下去。因此,PoP仍将继续位居3D封装创新的最前沿。